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BUOYANCY INDUCED FLOWS ADJACENT TO
HORIZONTAL SURFACES IN WATER NEAR
ITS DENSITY EXTREMUM

BeNJAMIN GEBHART,* MicHAEL S. BeNDELLT and HUSSAIN SHAUKATULLAH*

(Received 23 September 1977 and in revised form 3 February 1978)

Abstract—Buoyancy induced flows generated in cold water adjacent to a horizontal surface are analyzed.
A boundary region treatment is appropriate for a broad range of conditions when the net effect of the
buoyancy force is away from the surface. This results in on-flow at a leading edge for a plane flow, which
may arise when the spatial configuration of the buoyancy force may be described in two dimensional
Cartesian coordinates. A radial or disk-flow results when the configuration is radially symmetric about a
normal to the surface. The boundary-layer regime again results when the net buoyancy is away from the
surface and flow is outward from the axis. Both kinds of thermally buoyant flows are considered in low
temperature pure or saline water, wherein a density extremum may occur in the region of buoyancy. A
new, very accurate and simple density equation yields a compact transport formulation for both plane
and disk flows. Solutions are given for the Prandtl number and temperature conditions which normally
occur. Buoyancy reversals and conditions for convective inversion arise. Detailed tabulations of transport
parameters are included for both the isothermal and the uniform surface flux conditions. These results are
compared with those arising when the conventional buoyancy force approximation is used.

NOMENCLATURE

a,b,c,d, defined in equations (8)-(10);

Cpr specific heat of water ;

1, non-dimensional stream function ;

SusSasfasfa, coefficients in density
equation (1);

G,  modified Grashof number = 5(Gr/5)V/%;

Gr,  Grashof number;

g, acceleration due to gravity;

91.92,93,94, coefficients in density
equation (1};

hy, by, ha, by,  coefficients in density
equation (1);

I,,  total buoyancy force, equation (24);

k, thermal conductivity;

n, defined in equation (16);

P, non-dimensional pressure;;

P, pressure;

Py hydrostatic pressure;

D> motion pressure;

g, total local convected energy;

q, exponent in density equation (1);

R,  =(t,—t,)/{to—t,);

s, salinity;

5.,  salinity of ambient fluid;

t, temperature ;

tu, temperature of ice formation ;

Lo temperature where density is maximum ;

to, surface temperature ;

te,s  ambient temperature;

u, tangential velocity component ;
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v, normal velocity component ;

W,  local buoyancy force;

X, distance along the surface;

¥, distance normal to the surface.

Greek symbols

a, coefficient in density equation (1);

B, coefficient of thermal expansion;;

8, boundary region thickness;

n, non-dimensional distance in boundary
region;

ns  value of 5 at the edge of boundary
region;

v, kinematic viscosity ;

X density;

Pmy ~ maximum density ;

Pw» density of ambient fluid;

¢, non-dimensional temperature

=(t—t.)/(to—1);
¥, stream function.
Superscript

" differentiation with respect to n.

INTRODUCTION

Buovancy induced flows adjacent to horizontal or
nearly horizontal surfaces have not been studied as
extensively as those adjacent to vertical surfaces and
in freely rising plumes. However, they are very
important in many applications both in the environ-
ment and in technology. The flow which concerns us
here is that which arises adjacent to a horizontal
surface, in an extensive ambient medium, as a result
of a surface temperature different from that of the
ambient medium. Past observations of flows arising
from isolated surfaces have shown the existence,
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close to the surface, of a boundary-layer mode of
convection, followed, after a region of instability, by
a cellular motion. Schmidt [1] was apparently the
first to experimentally investigate flow above a flat
horizontal surface.

For thermal buoyancy alone, and the usual
approximations concerning density levels and differ-
ences, often called the Boussinesq or conventional
approximations, Stewartson [2] analyzed flow ad-
jacent to a semi-infinite isothermal surface, that is, a
surface with a single leading edge. A sign mistake in
the analysis led to an erroneous conclusion regarding
the necessary condition for the existence of a
boundary-layer like flow adjacent to such a surface.
This was corrected by Gill, Zeh and Del Casal [3]
who showed that the necessary condition was that
the buoyancy force be away from the surface, as for a
heated surface facing upward or a cooled surface
facing downward.

Rotem and Claassen [4, 5] obtained solutions for
an isothermal surface for several specific values of
Prandt] number. Asymptotic results for zero and
infinite Prandtl numbers are also given in [4]
Experimental observations with a Schlieren system
clearly indicated the existence of a boundary layer
near the leading edge on the upper side of a heated
horizontal surface, insulated on the bottom face.
Rotem [6] and Rotem and Claassen [4] also
formulated the similarity solution for horizontal
axisymmetric boundary-layer flow adjacent to an
unbounded horizontal surface and gave solutions for
an isothermal surface condition for an unspecified
Prandtl number. These are sometimes called disk
flows, in contrast to the plane flows previously
considered.

Pera and Gebhart [7] and [8] studied both flow
and the stability of horizontal and slightly inclined
plane flows. For a horizontal orientation, the
experimental results in air indicated an attached
region, with characteristics close to those predicted.
This region was followed downstream by a flow
separation in the form of very rapidly growing
longitudinal vortices. This latter consequence, along
with upstream disturbance growth characteristics,
implied an initiating role for upstream two-
dimensional spanwise disturbances.

Blanc and Gebhart [9] discuss, for disk flows, the
limits of physical reasonableness of a variation of ¢,
—14, 1.6. the difference between the local surface and
ambient medium temperatures. Solutions are given
for both isothermal and uniform flux conditions, for
t, uniform. Then procedures are presented which
give exact solutions of some disk and plane flows.

The present paper treats both the horizontal plane
and the axisymmetric flows, generated in both pure
and saline water, at temperature conditions which
may result in density extrema in the convection
region, e.g. at about 4°C at a pressure of 1bar in
pure water. Such flows are found in the melting and
freezing of ice surfaces and in processing technology.
Another very interesting and importaht mechanism

in such a horizontal configuration is the penetrative
convection which may arise in unstable stratification.
For simplicity, that transport process will be se-
parately treated.

A NEW DENSITY CORRELATION

For conditions around an extremum the con-
ventional approximation which evaluates the buoy-
ancy force g(p,, —p) as gpf(t—t,), in a thermally
driven flow, may not be used. See Gebhart and
Mollendorf [ 10]. Other density information becomes
necessary. From the importance of the properties of
pure and saline water have followed, over many
years, many investigations of density dependence on
t, s and p. However, this collection of information
was not developed for accuracy in the region of
inversion. In addition, none of the available cor-
relations are in a convenient form for analysis.

Gebhart and Mollendorf [11], have recently
developed a much simpler density relation which
gives very high accuracy around the inversion
temperature, in the temperature range from phase
equilibrium up to 20°C. It includes both pure and
saline water and applies to 40 ppt (“,,) salinity, s, and
to 1000 bars pressure. The agreement with modern
density data over this whole region is about 10 ppm
(RMS). The relation is

p(t.5,p) = p(s, p)[1—als, plt —1,,(s, p)|#=?]
(la)

where p,.(s, p) is the maximum density at s and p,
ta(s, p) is the corresponding inversion temperature
and q(s, p) is the exponent. Salinity is in parts per
thousand, °,, and pressure is in bars, 1latm
x 1.01 bars. The s and p dependent quantities above
are expressed as follows:

(S P) = p(0, {1+ f1(p)+59(p)+5%h, (p)]

(1b)
a(s, p) = a(0, D[+ f2(p) + sg2(p)+ 57k, (p)]

(1c)
t(5.0) = 1,00, D[ 1+ f3(p)+ sg5(p) + s> hy(p)]

(1d)
q(s,p) = q(0. 1)[1 + fo(p)+ 59, (p) + s>ha(p)].

(le)

The functions f;, g; and h; are the polynomials in (p
—1) and are given in Gebhart and Mollendorf [11].
The (0,1) quantities are values for pure water at
1bar abs. Of these, only p,(0,1)=999.972kgm™*
was chosen. The other ones, along with the coef-
ficients in the polynomials, were determined by a
non-linear regression. Results are tabulated in [11]
for the best fit and also for a much simpler one of
sufficient accuracy for most analysis. Values of «(0, 1)
and 1,(0,1) are 9.297173x107¢°C~¢ and
4.029325°C respectively. The large number of digits
in all coefficients result from fitting the equation to
data at the level of ppm.

Note that equation (1) contains only a single term
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in temperature, an expansion around the extremum
temperature at the local conditions s and p. This
simple dependence is extremely important in ana-
lysis. The simple salinity dependence is also very
useful since salinity gradients are very much more
important than pressure gradients in diffusive pro-
cesses at the size scale of interest here. The above
form results in very few additional parameters in a
boundary-layer formulation.

The liquid phase in water is limited in equilibrium
by the conditions of pressure, temperature and
salinity at which a solid phase appears. The
temperature of ice melting ¢; was recently deter-
mined by Fujino, Lewis and Perkin [12] to be

ta(s, p) = —0.02831 —0.499s
—0.00011252 —0.00759p (2)

where p is in bars absolute. This is the form
corrected through personal communication with Dr.
E. L. Lewis.

Using this expression, in conjunction with ¢,(s, p)
determined in our correlation, we find that the
extremum occurs in pure water at pressures less than
about 300 bars and for salinities of less than about
25%, at 1bar. However, our expression gives high
accuracy well beyond these s and p limits. These and
other relevant matters are discussed in more detail
by Gebhart and Mollendorf [10]} and [11].

ANALYSIS OF PLANE FLOW
Employing the first Boussinesq approximation in
the mass continuity equation, the first-order
boundary-layer equations, with no saline diffusion,
are

du du d*u 1 dp,
U—+pv—=v——— — 3)
Ox dy 3y p ox
10p, glps—p)
0= ———4—" @)
p 9y p
ot o k 0%
u—+v—=—— 5)
dx dy pc, oy*
du v
—+—=0 (6)
ox Oy

where y is the vertical coordinate and u and v are
velocity components parallel to the x and y
directions. The static pressure p has been taken as
the sum of the local hydrostatic pressure p, and
motion pressure p,,, P, is some representative density
level, k is thermal conductivity and ¢, is specific heat.
Gravitational acceleration, g, carries a sign, being
positive if in the same direction as y and negative if
in the opposite direction.

The buoyancy force is determined from (1) at a
given level of s and p, where o = af(s, p), p,, = p.(s, P),
t, = t,(s,p) and g = q(s, p), as

Po—pP = “pm(lt_tm'q*ltco_tmlq)- (7)

With the usual stream function, we use the following
transformation to seek similarity,

n(x,y) = b(x)y, ¥lx,y)=ve(x)fm)  (8)

t—t, t—ty 9
¢(")_to—tw T 9)
Pm = a(x)P(n) (10)
tm(s’p)_too
R=——— (11)
tO_too

Introducing (9) and (11) into (1) we evaluate the
buoyancy force W.

Po— P = 0Pulto—t,|*(|¢ —R|"—|R|%) (12)
= dmeto—tcoIqW.

Introducing the transformation into (3)-(6) we
obtain

p € p (cx cb,)f s
nr + _ " — — + —_ ’
b b b?
1 (ax P ab, 13)
-——— +—nP’)=0 1
pv? “.cb® ch*
, gopm,
Pr=— lto—1,1*(|¢p — RI*—{R|%)
ab
gopm
= — [to—t,|TW (14)
a
Cy cd,
¢"+Pr[— S -—¢f'—’ =0. (15)
b db .

For similarity, all the coefficients in the above
equations must be constants or functions of 5 only.
Similarity may arise either for an exponential or for
a power law dependence in d(x). Taking the power

law variation
d(x)=ty—t, = Nx" (16)

and choosing the reference density as p,,, we find

c=G (17)
b= G/5x (18)
vZp .
a= (G) 19
125x2 (19)
where
Gr\'* gx? 1/5
G=35 =5 —dlty—t|¢
\ 5 \5v?
gaqu3+nq 1/5
N ( 5v2 > . @0)

The Grashof number Gr, in (20) characterizes
such flows. However, as we shall see, it is not in
general an accurate indicator of either the vigor of
the local flow or of its detailed directional tendencies
under all conditions involving extrema. Note that it
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is always positive, given the definition of x. In terms
of the above quantities the differential equations
become

S+ (ng+3)ff"—(2ng+1) 72

4ng+2 ng—2
- - P =0 (21)
5
P' = —sign(g)(l¢ — R|*—[R|*)
= —sign(g)W 22)
¢"+Pr[(ng+3)f¢'—5n¢f’] = 0. (23)

The variations of p,,(s, p), a(s, p), t.{(s, p) and q(s, p)
in flow regions of limited vertical extent are
negligible, in the absence of saline diffusion, to the
order of approximation seen, for example, in (3)—(6).
Thus, s and p merely determine single values of g,,, o,
t, and g over the flow field. We note that any
imposed variation of ¢, or s, with x may result in a
variation of p (s, p). This would result in motion in
the ambient medium, analogous to baroclinic mo-
tion. This possibility we exclude by taking both ¢,
and s, uniform. Therefore, the only remaining x
dependence of (22) is possibly due to R.

From (14) it is seen that any purely x dependence
of R may not be removed by transformation of W,
since ¢ = ¢(n) with similarity. Thus, the necessary
conditions for similarity are either R = 0(t,, = t,,) or
to—t, independent of x (t, is uniform). Therefore,
there is similarity in W = W(n, R) either for R being
Zero or a constant.

For a horizontal surface, there is no component of
buoyancy force parallel to the surface. The flow is
driven entirely by a favorable motion pressure
gradient, VP, arising through the buoyancy force, W
in equation (22). The total buoyancy force across the
boundary region is given by

I, = '[ Wdn = f (¢ —RI*—IR[*)dn. (24)
0 ]

This quantity gives an estimate of the vigor of flow.

It could have been incorporated into the definition of

the Grashof number, in (20). The sign of I, is also

important and is discussed below.

Limits on the applicability of this formulation may
now be determined from the total local convected
energy Q(x), the local boundary region thickness
d(x) and the pressure gradient dp,,/0x. These are

ox) = J pe,(t—t ) udy oc x1+an+3Vs  (25)
0

8(x) = T oc x‘27 a3 (26)
b
opm . ) vZp [gax3di\**
— = sign(g) — ——
ox & x>\ 5v?

x [(4nq+2)J de+(2—nq)nWJ. 27

The integrated value of pressure gradient across the
flow region is

© P vZp [gox3d?
—dy =sign(g) — | ———
_Laxy g(g)x"[szJ

x [(4nq+2) Jm J‘w Wdn, dr]+(2—nq)r,1w]. (28)
1] ]

For a heated or a cooled surface, |Q(x)] must always
increase with x or, in the limit, remain constant.
Therefore, from (25), n = —3/(5+q). From (26), for
6(0) =0, n < 2/q. From (27) and (28) it is seen that
the sign of pressure gradient depends on the sign of
g, W and I,,. From the definition of W it can easily
be shown, by plotting W vs ¢, that for R < 0, W and,
therefore, I, are always positive. For R > 0.5, W
and I,, are always negative. Therefore, the sign of the
pressure gradient will be negative for —1/2g < n
< 2/q, see (27) and (28), for R < 0, if the sign of g is
negative. This is flow on the upper side. For R > 0.5
and positive g, on-flow results on the bottom side of
the surface.

In the region 0 < R < 0.5, W changes sign across
the boundary region and there is no way to tell a
priori what value of R would produce a developing
boundary-layer-regime flow in the positive x direc-
tion, above or below a surface. The final resolution
of this question lies in the complicated interaction of
buoyancy with momentum level and with thermal
and momentum diffusion. There is some very indirect
guidance in the experiments of Dumoré et al. [13]
and of Schenk and Schenkels [ 14], both with spheres
of ice in water. An apparent “convective inversion”
occurred at value of the present R of 0.17 and 0.25,
respectively. The recent results of Bendell and
Gebhart [15], with a vertical ice surface in water,
determined that the inversion occurred at a value of
R between 0.27 and 0.28. Consider, for example, a
slab of ice, at 0°C throughout, bounded below by
fresh water, at atmospheric pressure. Then ¢, = 0°C.
The solid curve in Fig. 1 is the density distribution vs
temperature, t/t,,, out toward the ambient condition.
Also shown are values of R when ¢ is taken as ¢, i.e.
for varying ambient temperature. For ¢, <1, i.e. R
< 0, the buoyancy force W is upward over the whole
convective layer, from t, to t,. However, for t, > ¢,
there are regions in the outer part of the region,
where the local buoyancy force is down. This
reversal region increases with an increase in R until,
at R = 0.5, the buoyancy force is downward across
the whole region. For larger ¢, (or R), the local
buoyancy force is everywhere down. The local
buoyancy force W is related to the changing motion
pressure by equation (22).

There are many interesting and important appli-
cations to consider. We treat two classes here. The
first is t,—t, = constant, (n = 0). This includes the
melting of an ice slab for the characteristic range of
R values seen in Fig. 1. It also includes consideration
of transport for additional values of R when ¢,
# 0°C. The above formulation (21)-(23), is general.
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F1G. 1. Density variation of pure water at 1 bar. Dashed curve gives values of R for an ice surface at 0°C,
ie tg = 0°C.

Another interesting circumstance considered is that
of a surface dissipating heat uniformly, i.e. ¢"(x)
= constant. Thus Q(x) oc x. This is seen in (25) to
result when n=2/(q+5). For ¢(0,1) we have n
= 0.2901. This condition includes applications which
might arise in radiation or other heat flux loading of
a surface in contact with cold water. In general, the
results of primary interest are the heat transfer and
viscous drag parameters, —¢’'(0) and f”(0). The local
Nusselt number is calculated from the former as

gxalty — .|\
Nu, = —¢'(0)(—~—> .
. 5v? .

(29)

Also of particular interest are the conditions under
which buoyancy force reversals across the flow
region might result in the net buoyancy force I,
becoming very small and perhaps changing sign.
This possibility was seen in the particular example
above of ty = 0°C as t,, decreases from high values
toward ¢,,, R decreases from the asymptotic value of
1.0. The fluid in the convective region is at first
everywhere more dense than in the ambient medium,
a downward buoyancy force, negative W. This means
on-flow on the lower side of a horizontal surface.
However, for t, < 2t,, the buoyancy force W
becomes increasingly positive in the region adjacent
to the surface. This region increases in extent as r,
decreases and, although I, is still negative, it
approaches zero.

On the other hand, if ¢, =1t,, then W is positive
over the whole convective region and, Iy, > 0. This is
on-flow on the upper side of a horizontal surface. It
is seen that for ¢, taken successively higher than ¢,
Iy decreases again toward zero, due to an increasing
negative contribution to net buoyancy in the outer
part of the convective region. Therefore, there is a
value of R, or perhaps some range of values of R
around I, =0, for which no reasonable solution
may be expected. Convective inversion lies som-
ewhere in this range.

Recall that z, = 0°C has only been chosen as a

specific example to demonstrate the mechanisms
which arise .through the buoyancy reversals en-
countered around t,. Other choices of t, lead to
similar results as t,, takes on different values with
respect of the particular value of ¢,(s,p) which
applies.

CALCULATIONS FOR AN ISOTHERMAL
SURFACE CONDITION

It is apparent that the local buoyancy force
changes direction somewhere across the flow region
throughout the range 0 < R < 1/2. The calculations
were carried out on both sides of this region and into
it from above, toward the inversion condition. The
equations, (21)-(23), and boundary conditions, with
n =0, are .

f"+3f"f—f?+3Pn—3P =0 (30)
P'=W =|¢—R|"-|R|* (31)
¢+3Pr¢/f =0 (32)

J0) = f'(0) = 1-¢(0) = ¢(c0)
= f'(90) = p(o0) = 0. (33)

These were solved for characteristic values of the
Prandtl number at low temperatures, 10.6, 11.6 and
12,6, and with g = g(0, 1) = 1.894816 and ¢(0,1000)
= 1.58295. The values of R of 16, 8, 4, 2, 1, 0.5, and
0.301 amount to flow along the bottom side of the
surface. Calculations were also made for R of — 16,
~8, —4, =2, —1, —0.5, 0 and 0.08, fiow along the
top side, for Pr = 11.6. The Prandtl number effect
was determined, for Pr = 10.6 and 12.6, only at R
values of +2, +1, +0.5 and 0. The resulting
buoyancy force, drag, pressure, heat-transfer and
entrainment velocity parameters I,,, f”(0), P(0), ¢'(0)
and f(n,) are collected in Part A of Table 1. Also
shown in Part C are the results obtained using the
conventional linear approximation for the density
difference in the buoyancy force. Convergence to the
listed values was obtained by decreasing the step size
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and increasing the region of integration until there
was no further change in sixth decimal place.

The variation of f”(0), ¢'(0), I,, and f(n,) with R
are also shown in Fig. 2 for Pr=11.6 and 4(s, p)
=q(0,1) = 1.894816 and 1.589250. All curves are

= similar in that they approach zero rapidly in the
2 R8S region 0 < R < 0.5. The tendency towards con-
S388 vective inversion is seen clearly in the plot of I,, vs R.
The positive and negative ranges of R are separated
—on 00 by the region of buoyancy force re\'zersal as indicatc?d
= § E 5 by change in sign of I,,. The break in the I, curves in
Si=== the region 0.08 < R < 0.301 results from lack of
< cee numerical convergence in the region of small positive
i © o I,,.. In this region buoyancy force rgversal occurs in
$ 5 § g g the outer part of the boundary region. The Prandtl
= I 94 number effect is seen from values in Part A of Table
E Lol 1 to be quite small, a few percent.
&g For Pr =11.6 and q(s, p) = q(0,1) = 1.894816, the
) Sa% tangential component of velocity f; the pressure P
s |aaz and the temperature ¢ are shown in Figs. 3-5
B ?’ ?’ ?' respectively, for various values of R. The weakening
of the flow, f’, in the range 0 < R < 0.5,is seen in
Fig. 3. At large |R| the positive and negative R curves
s | & § § merge. The difference between f” at the peak, for R
S S = +1, is only 8%. This reduces to 2% for R = +4.
eee For +16 they have practically merged, the difference
is less than 1%. Perhaps the most revealing of these
5% results is the pressure P, plotted in Fig. S. It is
< E é § generally negative, but less so in the region 0 < R
cco < 0.5 where I, approaches 0. Another effect is the
further penetration outward of the temperature field
« oo in Fig. 5 and the resulting decreasing temperature
S| § § gradient at the surface as R approaches 0. Each of
c“’ 1993 these distributions is seen to merge at large |R|.
= However, the difference between the positive and
£ “ — negative values of R are on-flow on the lower and
s =8 o § upper sides, respectively. This may be seen by
é- 512323 reference again to the specific circumstance shown in
2 [ Fig. 1.
.~§ 528 CALCULATIONS FOR A SURFACE DISSIPATING
5 |53 A UNIFORM HEAT FLUX
L1333 For a uniform flux boundary condition the surface
t temperature was seen above to slowly increase
downstream according to d = (t,—t,,) = Nx", where
= E g § n=2/(g+5). Now, a necessary condition for a
i o similarity solution of (22), so that, for example, ¢
ceee = ¢(n), is that W does not depend on x. Thus, R, in
(25), may not depend on x. A sufficient condition for
this is t, = t,(s,p), or R = 0. That is, the ambient
&1 3825 medium is at the extremum temperature condition
- for the s and p levels which pertain there. For this
condition, and for an imposed uniform surface heat

flux, the equations (21)-(23) become
(@+5)f"+5@+3)f"f—5@g+1)f?
2(3¢-5)
+2Pn — —S—P =0 (34)
P=W=¢? 39
(g+5)¢" +Pr[5(g+3)¢’f —10¢pf ] =0  (36)
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F1G. 2. Heat transfer ¢'(0), drag f"(0), mass flow rate f(y,) and net buoyancy I,,, over a range of R for an
isothermal surface for Pr = 11.6 and —— g = 1.894816; ———~~ q = 1.582950.
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F1G. 3. Tangential component of velocity across the boundary region for an isothermal surface over a
range of R for Pr = 11.6 and g = 1.894816. Values of R are shown on the curves.
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Fi1G. 4. Temperature distribution across the boundary region.

Conditions same as in Fig. 3. Values of R are shown
on curves.

8.0r

Conventionol
0

0.5

10 1.5 20
7

FiG. 5. Motion pressure distribution across the boundary

region. Conditions same as in Fig. 3. Values of R are shown
on curves.

JO) = f'0) = 1 -¢(0)

= p(e0) = f'(00) = P(00) = 0. (37)
The Grashof number is as defined in (20) and
" .5 5 2\ 1i(g+5)
el 2
k[ ~¢'(0))) g

The physical circumstance considered here may
also be visualized on Fig. 1. Recall that ¢, =1t,, R
=0. Since ty>t, =1, for heat addition, the
buoyancy force is inevitably up. Therefore, there will
be on flow to the surface only on the upper side.
Thus, the solution applies only there. Should the
heat flux be negative as for an energy sink, due, for
example, to radiation loss, the solution applies to
flow on the lower side. Equations (34)-(36) were
solved for Pr = 10.6, 11.6, and 12.6 for g = 1.894816
and 1.58295. The resulting buoyancy force, drag,
heat-transfer and entrainment velocity parameters
are collected in Part B of Table 1, together with the
conventional results, for ¢ = 1 in this formulation, in
Part C. The results and the Prandtl number effect are
seen to be similar to those at R=0 for the
isothermal surface condition, n = 0.

ANALYSIS OF AXISYMMETRIC FLOW

Axisymmetric flow on horizontal discs has been
considered by Rotem [6], Rotem and Claassen [4]
and by Blanc and Gebhart [9] for the conventional
buoyancy force approximation. Such flows may arise
in fluids adjacent to a horizontal surface when the
temperature difference causing the buoyancy force is
radially symmetric about a point on the surface. The
resulting flow is subject to boundary-layer analysis
when the spatial configuration of the temperature
field generates, through the buoyancy force, a flow
outward from the region of symmetry. Under this
condition, the boundary-layer equations, without the
usual buoyancy force approximation are:

éu  Gu 2% 1 0p,
U—+r—=y— - — (39)
Ox dy  dy? p ox
1ép,  (po—p)
0=-=—"4+g @0)
p Oy p
ot o k8t
U o o e @n
éx dy  pc, oy*
a é
— (ux) + — (vx)= 0. 42)
ax Jy

Here x is distance measured in radial direction and
other notation is as before for plane flow. The
continuity equation is satisfied by the use of Stokes
stream function , defined as

(43)

Following the procedure outlined above, for plane
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flow, it can be shown that the similarity transfor-
mation for the above set of equations is

y
n=—=¢G (44)
5x
- tn Y = vxGf 45)
[« g W]
2 e%s pv?
333 P = G*P (46)
125x2
- 82 p t—t, t—t, @)
Y TR = =
£|388 dx)  Nx"
P [ =il
? where
= |33 galto —t.I7x*\ 1
£ 2| dge G=5(——— (48)
< o oo
LSRN BNt 5v?
E P
2 b 1o
5 - R= . (49)
22K to—t
—~ ] S 0 «©
2§23
B <|3'C|’ < With this transformation and the density equation
(1), equations (39)—(41) become
~| s S+ @+ng)ff" —2ng+ 1)1
s $83 ng—2 4nq+2
hnll ppepa - nP — P=0 (50)
223 P = —sign(g)[|¢ —R|"—|R|] = —sign(g)W (51)
< 88¢ ¢+ Pri(ng+8)¢~Sn'$] =0, (52)
oo
The boundary conditions at the surface and in the
- oo distant medium in transformed variables are
~leoS ,
£|1238 f0) = f'(0) = 1-¢(0) = ¢(0)
g ]SS = ['(e0) = P(e0) = 0. (53)
£ The limits on n for a physically meaningful flow are
b=t < —
E 533 the same as for plane flow.
g % EES The above equations were solved for an isother-
2 boot mal (n = 0) surface condition for Prandtl numbers
g 10.6, 11.6 and 12.6 with q = 1.894816 and 1.58295.
E § § g The resulting buoyancy force, drag, heat-transfer and
SIga® entrainment velocity parameters are tabulated in
& ‘? S Table 2. For a uniform flux boundary condition
n=2/(g+5). Again R =0. Results were obtained for
Pr =10.6, 11.6 and 12.6. These are also tabulated in
s § a ‘;E Table 2. The results of conventional approximation,
- ggg q =1 when R =0, are also shown for comparison.
The temperature, velocity and pressure profiles in the
boundary region are similar to those of the plane
flow, as is the Prandtl number effect.
- -R]
e=d
CONCLUSIONS
This is the first analysis of natural convection
flows adjacent to horizontal surfaces in cold water,
wherein a density extremum may occur. The use of
the simple density relation for water, (1), has

eliminated the need of any approximation in the
buoyancy force term. Only two new parameters R
and q arise. These determine the fundamental nature
of the density field and the effects of the pressure and
salinity levels, respectively.
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Extensive calculations are presented for horizontal
surfaces with both isothermal or uniform flux
conditions. Wide ranges of Prandtl number, salinity
and pressure levels, g, and temperature conditions R
are considered. The conventional buoyancy force
approximation is included in the present formulation
by choosing ¢ = 1 in those flows for which R = 0.

The parameter I, determines the vigor of the flow
and the condition for convective inversion. For flow
over a horizontal surface, we find that I~ 0 for R
% 0.301. Thus, for an ice slab melting in water, this
corresponds to an ambient temperature of r
~ 5.7°C. In experiments with a vertical ice surface
melting in water, Bendell and Gebhart [15] found
flow reversal to occur between 5.5 and 5.6°C. A
particular striking result is the sharp decrease in heat
transfer in the region of density inversion. The effect
of Prandtl number and g on heat transfer is small
when |R| is small, and it increases with an increase in
R. No applicable experimental data are available to
compare with our numerical results.
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CONVECTION NATURELLE SUR DES SURFACES HORIZONTALES
DANS D’EAU AU VOISINAGE DE EXTREMUM DE DENSITE

Résumé—On analyse la convection naturelle générée dans l'eau froide adjacente a une surface
horizontale. Un traitement de région frontiére est approprié a un large domaine de conditions lorsque la
force de poussée est éloignée de la surface. Lorsque la configuration est axisymeétrique par rapport a une
normale 4 la surface, il existe un écoulement radial. Le régime de couche limite existe aussi quand la
poussée d’Archiméde est éloignée de la surface avec I'écoulement s'écartant de I'axe. Les deux types de
convection naturelle sont considérés pour une température basse d’eau pure ou salée, lorsqu’un extrémum
de densité existe dans le domaine considéré. Une nouvelle équation simple de densité donne une
formulation compacte de transport a la fois pour Pécoulement de plan et de disque. Des solutions sont
données pour des conditions réalistes de nombre de Prandtl et de température. On note des
renversements de poussée et des conditions d’inversion de convection. Des tabulations détaillées des
paramétres de transport sont incluses pour les deux cas de surface isotherme et de flux pariétal uniforme.
Ces résultats sont comparés & ceux qui sont obtenus pour Papproximation classique des forces de
poussée.

DURCH AUFTRIEB HERVOGERUFENE STROMUNGEN AN HORIZONTALEN
FLACHEN IN WASSER NAHE SEINES DICHTEEXTREMUMS

Zusammenfassung-—Es werden Stromungen untersucht, die in kaltem Wasser nahe einer horizontalen
Fliche durch Auftrieb hervorgerufen werden. Eine Behandlung als Grenzschichtgebiet ist in einem weiten
Bereich von Bedingungen angebracht, wenn der Netto-Effekte der Auftriebskraft von der Fliche
weggerichtet ist. Dies ergibt eine Zustrémung an der Anstrémkante einer ebenen Stromung, die auftreten
kann, wenn die rdumliche Anordnung der Auftriebskraft in zweidimensionalen kartesischen Koordinaten
beschrieben werden kann. Eine radiale oder Scheiben-Strémung ergibt sich, wenn die Anordnung radial
symmetrisch zu einer Flichennormalen ist. Ein Grenzschichtgebiet ergibt sich auch hier, wenn der Netto-
Auftrieb von der Oberfliche weg und die Stromung von der Achse nach auBen gerichtet ist. Beide Arten
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von Strémungen durch thermischen Auftrieb werden in reinem oder salzigem Wasser bei niedriger
Temperatur betrachtet, wobei ein Dichteextremum im Auftriebsgebiet vorliegen kann. Eine neue, sehr
genaue und einfache Dichtegleichung ergibt eine kompakte Formulierung der Transports sowohl fiir
ebene wie Scheibenstromungen. Fiir die Prandtl-Zahlen und Temperaturbedingungen, die normalerweise
vorkommen, werden Losungen angegeben. Auftriebsumkehr und Bedingungen fiir konvektive Inversion
treten auf. Detaillierte Tabellen der Transportparameter sind beigefiigt, sowohl fir Randbedingungen mit
isothermen Oberflichen wie fiir solche mit konstantes Wirmestromdichte. Die Ergebnisse werden mit
jenen verglichen, die erzielt werden, wenn man die iibliche Approximation der Auftriebskrafte benutzt.

MOTOKH, BO3HUKAIOWME YV FOPU3OHTAJIbHBIX ITOBEPXHOCTEN B PE3VJIbTATE
JEACTBUA APXUMEAOBBIX CHUJ1 B BOJE BEJU3U EE 3KCTPEMAJILHOW
NMJAOTHOCTH

AnnOTAIME — AHAM3UPYIOTCA NOTOKH, BO3HHKAIOLIME B XONOOHOH BOAE Y FOPH3OHTANLHON NOBEpX-
HOCTH B pe3y/bTaTe JeHCTBHA apXHMeN0BbIX CHl. TTpubGankeHHe NOrpaHHYHOTO €08 MOXHO HCIOJb-
30BaTh A/ IUHPOKOTO AHANA30HA YC/IOBHMIA, KOTaa CyMMapHbiii adexT apXxumMeIoBBIX CHJI CKA3bIBACTCA
BI3JIH OT MOBEPXHOCTH. DTO NPOABNACTCA B HATEKAHHH HA NEPEAHIO KPOMKY NPH Mj0CKONapasielib-
HOM TEYEHHH, YTO MOXET HMETH MECTO B C/lydae, KOria NPOCTPaHCTBEHHAA KOHDHTypaLHsa NOoABEMHOR
CHJIBI ONMCHIBAETCA B ABYMEPHO#H CHCTEME IEKapTOBbIX KOOpAMHAT. PannansHoe MM AuckooGpa3noe
TE4YEHHE BO3ZHHKAET B TOM CJlydae, KOrla KOHQUIypalHus ABJIACTCA PaAHA/IbLHO CHMMETPHYHOH OTHOCH-
TeNbHO HOPMaJIH K MOBEPXHOCTH. PeXHM MOrpaHHYHOro Cnos BO3IHMKAET OMNATh, KOTrJa CyMMapHas
NOABEMHAs CHNA AeHCTBYET BAANM OT MOBEPXHOCTH, a TEYEHHE MPOMCXOAMT Hapyxy oT ocu. Paccma-
TpuBaloTCA 06a BHAA TEMIOBLIX CBOOOAHOKOHBEXTHMBHbIX MTOTOKOB, BO3HHMKAIOIWIHX NPH HH3KOH TeMm-
neparype B 4HMCTOH HIH CONéHOH BoAE, B KOTOPOH JIKCTPEMYM NJIOTHOCTH MOXET HMEThb MECTO B
obnacTu geiicTBus apxumenosbix cun. Hosoe, 10BOJILHO TOYHOE H IPOCTOE, YPABHEHHE NJI TJIOTHOCTH
N03B0JIAET MOMYYHTh KOMIAKTHYIO GOPMYJIHPOBKY NMEPEHOCA B CIIYyYasX MJIOCKOro M Auckoobpa3Horo
TeueHuit. [puBoasTca pewenns ans yucna TpasHATAs ¥ TeMnepaTYpHBIX YCIOBHil, KOTOphie OOBIYHO
BCTpe4aloTcs Ha mnpakTHke. OTMe4aeTcs BO3HHKHOBCHHE OOpallieHHS MOABEMHBIX CHJ1 M YCIOBHH
KOHBEKTHBHO# nHBepcHH. [1puBonsTca noapobusle TabauuLl napaMeTpoB MEPEHOCA Kak AN M30Tep-
MHYECKHX YCJIIOBHH Ha MOBEPXHOCTH, Tak M U CJy4as OMHOPOJHOro TEMJIOBOrO MOTOKA Ha
nosepxHocTH. JlaHoO CpaBHEHHE TIOJIYMEHHBIX Pe3yJbTaTOB CO C/1y4aeM HMCHOJb3OBAHHA OOBIMHOIrO
apXUMEeN0BOTO NMPHOIHKEHHA.
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