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Abstract-Buoyancy induced flows generated in cold water adjacent to a horizontal surface are analyzed. 
A boundary region treatment is appropriate for a broad range of conditions when the net effect of the 
buoyancy force is away from the surface. This results in on-flow at a leading edge for a plane flow, which 
may arise when the spatial configuration of the buoyancy force may be described in two dimensional 
Cartesian coordinates. A radial or disk-flow results when the configuration is radially symmetric about a 
normal to the surface. The boundary-layer regime again results when the net buoyancy is away from the 
surface and flow is outward from the axis. Both kinds of thermally buoyant Rows are considered in low 
temperature pure or saline water, wherein a density extremum may occur in the region of buoyancy. A 
new, very accurate and simple density equation yields a compact transport formulation for both plane 
and disk flows. Solutions are given for the Prandti number and temperature conditions which normally 
occur. Buoyancy reversals and conditions for convective inversion arise. Detailed tabulations of transport 
parameters are included for both the isothermal and the uniform surface flux conditions. These results are 

compared with those arising when the conventional buoyancy force approximation is used. 

NOMENCLATURE 

a,b,c,d, defined in equations @-(lo); 

CPj 
specific heat of water ; 

f, non-dimensional stream function ; 

fl,filf3&, coefficients in density 
equation (1); 

G, modified Grashof number = w~(G~,/S)~‘~; 
Gr, Grashof number ; 
93 acceleration due to gravity; 

h921931941 coefficients in density 
equation (1); 

h,, h,, h, h4, coefficients in density 

I w 

k 
4 

p, 

Pt 
Ph2 

P mr 

Q7 
4% 
R, 
‘% 
S rn? 

6 

Gl* 

t Ilo 

t 09 

t 0.79 

u, 

equation (1); 
total buoyancy force, equation (24); 
thermal conductivity ; 
defined in equation (16) ; 
non-dimensional pressure ; 
pressure ; 
hydrostatic pressure; 
motion pressure ; 
total local convected energy; 
exponent in density equation (1) ; 
= @, - t, )/% - L) ; 
salinity; 
salinity of ambient fluid; 
temperature ; 
temperature of ice formation ; 
temperature where density is maximum ; 
surface temperature; 
ambient temperature ; 
tangential velocity component ; 
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0, 

W 
x, 
Y, 

normal velocity component ; 
local buoyancy force; 
distance along the surface; 
distance normal to the surface. 

Greek symbols 

a, coefficient in density equation (1); 

f% coefficient of thermal expansion ; 
4 boundary region thickness; 

99 non-dimensional distance in boundary 
region ; 

4?sr value of Q at the edge of boundary 
region ; 

V, kinematic viscosity; 

Pt density; 

P t?l, maximum density ; 

P rn, density of ambient fluid; 

cb? non-dimensional temperature 

= (r-t, )l(to - t,) ; 
$7 stream function. 

Superscript 

f differentiation with respect to q. 

INTRODUCTION 

BUOYANCY induced flows adjacent to horizontal or 

nearly horizontal surfaces have not been studied as 
extensively as those adjacent to vertical surfaces and 
in freely rising plumes. However, they are very 
important in many applications both in the environ- 
ment and in technology. The flow which concerns us 
here is that which arises adjacent to a horizontal 
surface, in an extensive ambient medium, as a result 
of a surface temperature different from that of the 
ambient medium. Past observations of flows arising 
from isolated surfaces have shown the existence, 
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close to the surface, of a boundary-layer mode of 
convection, followed, after a region of instability, by 
a cellular motion. Schmidt [1] was apparently the 
first to experimentally investigate flow above a flat 
horizontal surface. 

For thermal buoyancy alone, and the usual 
approximations concerning density levels and differ- 
ences, often called the Boussinesq or conventional 
approximations, Stewartson [2] analyzed flow ad- 
jacent to a semi-infinite isothermal surface, that is. a 
surface with a single leading edge. A sign mistake in 
the analysis led to an erroneous conclusion regarding 
the necessary condition for the existence of a 
boundary-layer like flow adjacent to such a surface. 
This was corrected by Gill, Zeh and Del Casal [3] 

who showed that the necessary condition was that 
the buoyancy force be away from the surface, as for a 
heated surface facing upward or a cooled surface 
facing downward. 

Rotem and Claassen [4,5] obtained solutions for 
an isothermal surface for several specific values of 
Prandtl number. Asymptotic results for zero and 
infinite Prandtl numbers are also given in [4]. 
Experimental observations with a Schlieren system 

clearly indicated the existence of a boundary layer 
near the leading edge on the upper side of a heated 
horizontal surface, insulated on the bottom face. 
Rotem [6] and Rotem and Claassen [4] also 
formulated the similarity solution for horizontal 
axisymmetric boundary-layer flow adjacent to an 
unbounded horizontal surface and gave solutions for 
an isothermal surface condition for an unspecified 
Prandtl number. These are sometimes called disk 
flows, in contrast to the plane flows previously 
considered. 

Pera and Gebhart [7] and [8] studied both flow 
and the stability of horizontal and slightly inclined 
plane flows. For a horizontal orientation, the 
experimental results in air indicated an attached 
region, with characteristics close to those predicted. 
This region was followed downstream by a flow 
separation in the form of very rapidly growing 
longitudinal vortices. This latter consequence, along 

with upstream disturbance growth characteristics, 
implied an initiating role for upstream two- 
dimensional spanwise disturbances. 

Blanc and Gebhart [9] discuss, for disk flows, the 
limits of physical reasonableness of a variation of t, 

-t,, . i e the difference between the local surface and 
ambient medium temperatures. Solutions are given 
for both isothermal and uniform flux conditions, for 
t, uniform. Then procedures are presented which 
give exact solutions of some disk and plane flows. 

The present paper treats both the horizontal plane 
and the axisymmetric flows, generated in both pure 
and saline water, at temperature conditions which 
may result in density extrema in the convection 
region, e.g. at about 4°C at a pressure of 1 bar in 
pure water. Such flows are found in the melting and 
freezing of ice surfaces and in processing technology. 
Another very interesting and important mechanism 

in such a horizontal configuration is the penetrative 

convection which may arise in unstable stratification, 
For simplicity, that transport process will be se- 
parately treated. 

A NEW DENSITY CORRELATION 

For conditions around an extremum the con- 

ventional approximation which evaluates the buoy- 
ancy force g(p,,- p) as gpg(t-t,), in a thermally 
driven flow, may not be used. See Gebhart and 
Mollendorf [lo]. Other density information becomes 

necessary. From the importance of the properties of 
pure and saline water have followed, over many 
years, many investigations of density dependence on 
t, s and p. However, this collection of information 
was not developed for accuracy in the region of 
inversion. In addition, none of the available cor- 
relations are in a convenient form for analysis, 

Gebhart and Mollendorf [ll], have recently 

developed a much simpler density relation which 
gives very high accuracy around the inversion 
temperature, in the temperature range from phase 
equilibrium up to 20°C. It includes both pure and 
saline water and applies to 40 ppt ([I,,,,) salinity, s. and 
to 1000 bars pressure. The agreement with modern 
density data over this whole region is about 1Oppm 
(RMS). The relation is 

dL%P) = P,b,P)[l --a(s,P)lt-tt,(s,P)l~‘“~P’] 

(la) 

where p,,,(s,p) is the maximum density at s and p, 

t,(s, p) is the corresponding inversion temperature 
and q(s,p) is the exponent. Salinity is in parts per 
thousand, Ooo, and pressure is in bars, 1 atm 
= 1.01 bars. The s and p dependent quantities above 
are expressed as follows: 

(lb) 

e&P) = m. 1 )[I +.f;(P)+.~g,(P)+s2h,(P)] 

(lc) 

Map) = La I)[1 +.f3(P)+.~g3~P)+s2h~(P)] 

(IdI 

qkPl= 4@. 1 )[I +f4(P)+SS~IP)+s2h4(P)]. 

(le) 

The functions fi. gi and 11~ are the polynomials in (p 
- 1) and are given in Gebhart and Mollendorf [I 11. 
The (0.1) quantities are values for pure water at 
1 bar abs. Of these, only p,(O, 1) = 999.972 kgmm3 
was chosen. The other ones, along with the coef- 
ficients in the polynomials, were determined by a 
non-linear regression. Results are tabulated in [ 1 l] 
for the best fit and also for a much simpler one of 
sufficient accuracy for most analysis. Values of a(0, 1) 
and LSO, 1) are 9.297173 x 10-O Y-” and 
4.029325”C respectively. The large number of digits 
in all coefficients result from fitting the equation to 
data at the level of ppm. 

Note that equation (1) contains only a single term 
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in temperature, an expansion around the extremum 
temperature at the local conditions s and p. This 
simple dependence is extremely important in ana- 
lysis. The simple salinity dependence is also very 
useful since salinity gradients are very much more 
important than pressure gradients in diffusive pro- 
cesses at the size scale of interest here. The above 
form results in very few additional parameters in a 
boundary-layer formulation. 

The liquid phase in water is limited in equilibrium 
by the conditions of pressure, temperature and 
salinity at which a solid phase appears. The 
temperature of ice melting ti, was recently deter- 
mined by Fujino, Lewis and Perkin [12] to be 

With the usual stream function, we use the following 
transformation to seek similarity, 

t,(s, p) = -0.02831-0.499s 

-0.000112s* -0.00759p (2) 

where p is in bars absolute. This is the form 
corrected through personal communication with Dr. 
E. L. Lewis. 

Using this expression, in conjunction with t,(s, p) 
determined in our correlation, we find that the 
extremum occurs in pure water at pressures less than 
about 300 bars and for salinities of less than about 
25%” at 1 bar. However, our expression gives high 
accuracy well beyond these s and p limits. These and 
other relevant matters are discussed in more detail 
by Gebhart and Mollendorf [lo] and [ 111. 

ANALYSIS OF PLANE FLOW 

Employing the first Boussinesq approximation in 
the mass continuity equation, the first-order 
boundary-layer equations, with no saline diffusion, 
are 

au au a% 1 ah 
U_-+V__=V_-_- 
ax ay ay2 p ax 

(3) 

1 ah dP, -PI 
()= ---+ 

P ay P 

at at k a% 
u-+u-_=-- 

ax ay PC, a9 

au a0 
-+-_=o 
ax ay 

(4) 

(5) 

(6) 

where y is the vertical coordinate and u and u are 
velocity components parallel to the x and y 
directions. The static pressure p has been taken as 
the sum of the local hydrostatic pressure p,, and 
motion pressure pm, pm is some representative density 
level, k is thermal conductivity and cp is specific heat. 
Gravitational acceleration, g. carries a sign, being 
positive if in the same direction as y and negative if 
in the opposite direction. 

The buoyancy force is determined from (1) at a 
given level of s and p, where CI = a(s, p), pm = p,,,(s, p), 

t, = t,,h P) and 4 = q(s, P), as 

Pm-P = wm(lt--t,lq- IL -42). (7) 

vk Y) = bb)y, $6~ Y) = v4xMv) (8) 
t-t, t-t, 

4(q) = - = - (9) 
ro-rcc d(x) 

Pm = @)P(?) (10) 

L(S,P)-t, 
R= 

to-t, 
(11) 

Introducing (9) and (11) into (1) we evaluate the 
buoyancy force W. 

pm-P = vmlto-tmlq(ld-RI’-IRlq) 

= crp,)t, - t,pw. 
(12) 

Introducing the transformation into (3)-(6) we 
obtain 

f'2 

1 

i 

ab 
-- ““P+sp =o (13) 

pv= cb3 cb4 1 

p’=- ~~to-t,~q(~+RIq-~RIq) 

gaPIll 
= - - It, - t,pw 

ab 
(14) 

(15) 

For similarity, all the coefficients in the above 
equations must be constants or functions of r) only. 
Similarity may arise either for an exponential or for 
a power law dependence in d(x). Taking the power 
law variation 

d(x) = to-t, = Nx” (16) 

and choosing the reference density as p,, we find 

c=G (17) 

b = G/5x (18) 
2 

a=- 

I;,“, (G) 
4 

2 
(19) 

where 

G = S(:)l” = 5~~lto-tm,q)1’5 

gaj,,4x3 +V 

= 5 ( > 

l/5 

5v2 
(20) 

The Grashof number Gr, in (20) characterizes 
such flows. However, as we shall see, it is not in 
general an accurate indicator of either the vigor of 
the local flow or of its detailed directional tendencies 
under all conditions involving extrema. Note that it 
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is always positive, given the definition of x. In terms 
of the above quantities the differential equations 
become 

f”‘+(nq+3)ff”-(2nq+l)ffZ 

4nq+2 nq-2 
-_p- -VP’ = 0 (21) 

5 5 

P’= -sign(g)(l+-R14-~IR1q) 

= -sign(g)W (22) 

#‘+ Pr[(nq + 3)-f@- 5n$f’] = 0. (23) 

The variations of&s, p), a(s, p), t,(s, p) and q(s, p) 
in flow regions of limited vertical extent are 
negligible, in the absence of saline diffusion, to the 
order of approximation seen, for example, in (3)-(6). 
Thus, s and p merely determine single values of P,,,, tl, 
t, and q over the flow field. We note that any 
imposed variation oft, or s, with x may result in a 
variation of pm@, p). This would result in motion in 
the ambient medium, analogous to baroclinic mo- 
tion. This possibility we exclude by taking both t, 
and s, uniform. Therefore, the only remaining x 
dependence of (22) is possibly due to R. 

From (14) it is seen that any purely x dependence 
of R may not be removed by transformation of W, 

since 4 = 4(q) with similarity. Thus, the necessary 
conditions for similarity are either R = O(t, = t,) or 
t, -t, independent of x (to is uniform). Therefore, 
there is similarity in W = W(Q R) either for R being 
zero or a constant. 

For a horizontal surface, there is no component of 
buoyancy force parallel to the surface. The flow is 
driven entirely by a favorable motion pressure 
gradient, VP, arising through the buoyancy force, W 
in equation (22). The total buoyancy force across the 
boundary region is given by 

I_=I ,,,=jO== (14-Rlq-INq)dv. (24) 

This quantity gives an estimate of the vigor of flow. 
It could have been incorporated into the definition of 
the Grashof number, in (20). The sign of I, is also 
important and is discussed below. 

Limits on the applicability of this formulation may 
now be determined from the total local convected 
energy Q(x), the local boundary region thickness 
6(x) and the pressure gradient ap,/ax. These are 

s 

m 

Q(x) = pc,(t-t,)udy a x[(~+~)“+~~‘~ (25) 
0 

Vn 
(qx) = b a X(Z-nq)/5 (26) 

ap, v2p gax’dq 4’5 
ax= sign@)T ___ 

( > 5v2 

Wdv+(Z-nq)vW . 1 (27) 

The integrated value of pressure gradient across the 
flow region is 

s m ap, v2p gax3dQ 

o ax 
-ddy = sign@)x4 - 

I 1 5v2 

x [(4v+2)Jom p Wdrll 4 + (2 - nq)tlL 1. (28) 

For a heated or a cooled surface, IQ(x)1 must always 
increase with x or, in the limit, remain constant. 
Therefore, from (25), n 2 - 3/(5 + q). From (26), for 
6(O) = 0, n < 2/q. From (27) and (28) it is seen that 
the sign of pressure gradient depends on the sign of 
g, W and I,. From the definition of W it can easily 
be shown, by plotting W vs 4, that for R < 0, Wand, 

therefore, I,, are always positive. For R > 0.5, W 

and I, are always negative. Therefore, the sign of the 
pressure gradient will be negative for - 1/2q < n 
< 2/q, see (27) and (28), for R < 0, if the sign of g is 
negative. This is flow on the upper side. For R > 0.5 
and positive g, on-flow results on the bottom side of 
the surface. 

In the region 0 < R < 0.5, W changes sign across 
the boundary region and there is no way to tell a 
priori what value of R would produce a developing 
boundary-layer-regime flow in the positive x direc- 
tion, above or below a surface. The final resolution 
of this question lies in the complicated interaction of 
buoyancy with momentum level and with thermal 
and momentum diffusion. There is some very indirect 
guidance in the experiments of Dumori et al. [13] 
and of Schenk and Schenkels [14], both with spheres 
of ice in water. An apparent “convective inversion” 
occurred at value of the present R of 0.17 and 0.25, 
respectively. The recent results of Bendell and 
Gebhart [15], with a vertical ice surface in water, 
determined that the inversion occurred at a value of 
R between 0.27 and 0.28. Consider, for example, a 
slab of ice, at 0°C throughout, bounded below by 
fresh water, at atmospheric pressure. Then to = 0°C. 
The solid curve in Fig. 1 is the density distribution vs 
temperature, t/t,, out toward the ambient condition. 
Also shown are values of R when t is taken as t,, i.e. 
for varying ambient temperature. For tm < t, i.e. R 

< 0, the buoyancy force W is upward over the whole 
convective layer, from to to t,. However, for t, > t, 
there are regions in the outer part of the region, 
where the local buoyancy force is down. This 
reversal region increases with an increase in R until, 
at R = 0.5, the buoyancy force is downward across 
the whole region. For larger t, (or R), the local 
buoyancy force is everywhere down. The local 
buoyancy force W is related to the changing motion 
pressure by equation (22). 

There are many interesting and important appli- 
cations to consider. We treat two classes here. The 
first is to-t, = constant, (n = 0). This includes the 
melting of an ice slab for the characteristic range of 
R values seen in Fig. 1. It also includes consideration 
of transport for additional values of R when to 
# 0°C. The above formulation (21)-(23), is general. 
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t/t, t-/t,,, for the dashed CUWB 

FIG. 1. Density variation of pure water at 1 bar. Dashed curve gives values of R for an ice surface at 0°C 
i.e. t, = 0°C. 

Another interesting circumstance considered is that 
of a surface dissipating heat uniformly, i.e. q”(x) 
= constant. Thus Q(x) cc x. This is seen in (25) to 
result when n = 2/(q+ 5). For q(0, 1) we have n 
= 0.2901. This condition includes applications which 
might arise in radiation or other heat flux loading of 
a surface in contact with cold water. In general, the 
results of primary interest are the heat transfer and 
viscous drag parameters, -q%‘(O) and f”(0). The local 
Nusselt number is calculated from the former as 

( gx3alt, - t,p 1’S 
Nu, = -4'(O) 

i 5v2 
(29) 

Also of particular interest are the conditions under 
which buoyancy force reversals across the flow 
region might result in the net buoyancy force I, 
becoming very small and perhaps changing sign. 
This possibility was seen in the particular example 
above of t,, = 0°C as t, decreases from high values 
toward t,, R decreases from the asymptotic value of 
1.0. The fluid in the convective region is at first 
everywhere more dense than in the ambient medium, 
a downward buoyancy force, negative W. This means 
on-flow on the lower side of a horizontal surface. 

However, for t, < 2t,, the buoyancy force W 
becomes increasingly positive in the region adjacent 
to the surface. This region increases in extent as t, 
decreases and, although I, is still negative, it 
approaches zero. 

On the other hand, if t, = t,, then W is positive 
over the whole convective region and, I, > 0. This is 
on-flow on the upper side of a horizontal surface. It 
is seen that for t, taken successively higher than r,,,, 
I, decreases again toward zero, due to an increasing 
negative contribution to net buoyancy in the outer 
part of the convective region. Therefore, there is a 
value of R, or perhaps some range of values of R 
around I, = 0, for which no reasonable solution 
may be expected. Convective inversion lies som- 
ewhere in this range. 

Recall that t, = 0°C has only been chosen as a 

specific example to demonstrate the mechanisms 
which arise through the buoyancy reversals en- 
countered around t,. Other choices of t, lead to 
similar results as t, takes on different values with 
respect of the particular value of t&p) which 
applies. 

CALCULATIONS FOR AN ISOTHERMAL 
SURFACE CONDITION 

It is apparent that the local buoyancy force 
changes direction somewhere across the flow region 
throughout the range 0 < R < l/2. The calculations 
were carried out on both sides of this region and into 

it from above, toward the inversion condition. The 
equations, (21)-(23), and boundary conditions, with 
n = 0, are 

f”‘+3f”f-f’2+~~‘~-4p = 0 (30) 

p’= W = (cp-R(q-IR1q (31) 

(i, + 3Prql’f = 0 (32) 

f(0) = f’(0) = l-(11(0) = q(co) 

= f’(c0) = p(a)) = 0. (33) 

These were solved for characteristic values of the 
Prandtl number at low temperatures, 10.6, 11.6 and 
12.6, and with q = q(0, 1) = 1.894816 and q(O,lOOO) 
= 1.58295. The values of R of 16, 8, 4, 2, 1, 0.5, and 
0.301 amount to flow along the bottom side of the 
surface. Calculations were also made for R of - 16, 
-8, -4, -2, -1, -0.5, 0 and 0.08, flow along the 
top side, for Pr = 11.6. The Prandtl number effect 
was determined, for Pr = 10.6 and 12.6, only at R 

values of +2, +l, f0.5 and 0. The resulting 
buoyancy force, drag, pressure, heat-transfer and 
entrainment velocity parameters Z,,f”(O), P(O), f#~‘(0) 

and J(~J,) are collected in Part A of Table 1. Also 
shown in Part C are the results obtained using the 
conventional linear approximation for the density 
difference in the buoyancy force. Convergence to the 
listed values was obtained by decreasing the step size 
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and increasing the region of integration until there 
was no further change in sixth decimal place. 

The variation of f”(O), d’(O), I, and f(q,) with R 

are also shown in Fig. 2 for Pr = 11.6 and q(s, p) 

= q(0, I) = 1.894816 and 1.589250. All curves are 
similar in that they approach zero rapidly in the 
region 0 < R < 0.5. The tendency towards con- 
vective inversion is seen clearly in the plot of I, vs R. 

The positive and negative ranges of R are separated 
by the region of buoyancy force reversal as indicated 
by change in sign of I,. The break in the I, curves in 
the region 0.08 < R < 0.301 results from lack of 
numerical convergence in the region of small positive 
I,. In this region buoyancy force reversal occurs in 
the outer part of the boundary region. The Prandtl 
number effect is seen from values in Part A of Table 
1 to be quite small, a few percent. 

For Pr = 11.6 and q(s,p) = q(O,l) = 1.894816, the 
tangential component of velocity f ; the pressure P 

and the temperature C#I are shown in Figs. 3-5 
respectively, for various values of R. The weakening 
of the flow, f’, in the range 0 < R < 0.5, is seen in 
Fig. 3. At large [RI the positive and negative R curves 
merge. The difference between f’ at the peak, for R 

= f 1, is only 8%. This reduces to 2% for R = f4. 
For k 16 they have practically merged, the difference 
is less than 1%. Perhaps the most revealing of these 
results is the pressure P, plotted in Fig. 5. It is 
generally negative, but less so in the region 0 < R 

< 0.5 where I, approaches 0. Another effect is the 
further penetration outward of the temperature field 
in Fig. 5 and the resulting decreasing temperature 
gradient at the surface as R approaches 0. Each of 
these distributions is seen to merge at large IR(. 

However, the difference between the positive and 
negative values of R are on-flow on the lower and 
upper sides, respectively. This may be seen by 
reference again to the specific circumstance shown in 
Fig. 1. 

CALCULATIONS FOR A SURFACE DISSIPATING 
A UNIFORM HEAT FLUX 

For a uniform flux boundary condition the surface 
temperature was seen above to slowly increase 
downstream according to d = (to-c,) = Nx”, where 
n = 2/(q+5). Now, a necessary condition for a 
similarity solution of (22), so that, for example, (I, 
= q(q), is that W does not depend on x. Thus, R, in 
(25), may not depend on x. A sufficient condition for 
this is t, = t&p), or R = 0. That is, the ambient 
medium is at the extremum temperature condition 
for the s and p levels which pertain there. For this 
condition, and for an imposed uniform surface heat 
flux, the equations (21)-(23) become 

(q+S)f”‘+5(q+3)f”f-5(q+l)f’2 

2(3q- 5) 
+2p’q - -----P=O (34) 

5 

pl=W=@ (35) 

(q+5)(p”+Pr[5(q+3)#f-lOq?f’] = 0 (36) 
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FIG. 2. Heat transfer 4’(O), drag f”(O), mass flow rate f(qJ and net buoyancy I,, over a range of R for an 
isothermal surface for Pr = 11.6 and - q = 1.894816; ----- q = 1.582950. 
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FIG. 3. Tangential component of vetocity across the boundary region for an isothermal surface over a 
range of R for Pr = 11.6 and q = 1.894816. Values of R are shown on the curves. 
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f(0) = J”(0) = 1 -(r,(O) 

= v,(co) = f’(a) = P(m) = 0. (37) 

0.6 - 

+ 0.5 - 

0.4 - 

0.3 - 

0.2 - 

0.1 - 

9 

FIG. 4. Temperature distribution across the boundary region 
Conditions same as in Fig. 3. Values of R are shown 

on curves. 
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9 

FIG. 5. Motion pressure distribution across the boundary 
region. Conditions same as in Fig. 3. Values of R are shown 

on curves. 

The Grashof number is as defined in (20) and 

The physical circumstance considered here may 
also be visualized on Fig. 1. Recall that t, = t,, R 
= 0. Since t, > t, = t, for heat addition, the 
buoyancy force is inevitably up. Therefore, there will 
be on flow to the surface only on the upper side. 
Thus, the solution applies only there. Should the 
heat flux be negative as for an energy sink, due, for 
example, to radiation loss, the solution applies to 
flow on the lower side. Equations (34)-(36) were 
solved for Pr = 10.6, 11.6, and 12.6 for q = 1.894816 
and 1.58295. The resulting buoyancy force, drag, 
heat-transfer and entrainment velocity parameters 
are collected in Part B of Table 1, together with the 
conventional results, for q = 1 in this fo~ulation, in 
Part C. The results and the Prandtl number effect are 
seen to be similar to those at R = 0 for the 
isothermal surface condition, n = 0. 

ANALYSIS OF AXISYMMETRIC FLOW 

Axisymmetric flow on horizontal discs has been 
considered by Rotem [6], Rotem and Claassen [4] 
and by Blanc and Gebhart [9] for the conventional 
buoyancy force approximation. Such flows may arise 
in fluids adjacent to a horizontal surface when the 
temperature difference causing the buoyancy force is 
radially symmetric about a point on the surface. The 
resulting flow is subject to boundary-layer analysis 
when the spatial configuration of the temperature 
field generates, through the buoyancy force, a flow 
outward from the region of symmetry. Under this 
condition, the boundary-layer equations, without the 
usual buoyancy force approximation are: 

su au d% 1 ah u-+f__=:p___- 
8.~ ay ay2 p ax 

(39) 

1 dPl?l (Pee -PI 
o= ---...-+g~ 

P aY P 

at at k a2t 
u-.+g,l-.----_-.....- 

ii 8~ PC, a9 iX 
(41) 

(42) 

Here x is distance measured in radial direction and 
other notation is as before for plane flow. The 
continuity equation is satisfied by the use of Stokes 
stream function I/I, defined as 

1 a$ 1 atli 
u=-- 

x aJJ’ 
D-_ ---. 

x ax 
(43) 

Following the procedure outlined above, for plane 
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flow, it can be shown that the similarity transfor- 
mation for the above set of equations is 

&G (44) 
5x 

t,b = vxGf (45) 

PV2 
P, = - G4P 

125x2 
(46) 

t-t, t-t, 
4=-=- 

d(x) Nx” 
(47) 

where 

gaJt, - t,14x3 Ii5 
G=5 

5v2 > 
(48) 

L--t, 
R=p. (49) 

to--t, 
With this transformation and the density equation _ _ 
(l), equations (39)-(41) become 

f”’ + (8 + nq)ff” - (2nq + l)f’2 

nq-2 4nq+2 
-_rlp’-- P=O 

5 5 

P = -sign(g)[~~-R~q-~R~q] = -sign(g)W 

c#Y+Pr[(nq+8)d’f-5nf’$] = 0. 

(50) 

(51) 

(52) 

The boundary conditions at the surface and in the 
distant medium in transformed variables are 

f(O) = f’(O) = l-d@) = 4(m) 
= f’(m) = P(a) = 0. (53) 

The limits on n for a physically meaningful flow are 
the same as for plane flow. 

The above equations were solved for an isother- 
mal (n = 0) surface condition for Prandtl numbers 
10.6, 11.6 and 12.6 with q = 1.894816 and 1.58295. 
The resulting buoyancy force, drag, heat-transfer and 
entrainment velocity parameters are tabulated in 
Table 2. For a uniform flux boundary condition 
n = 2/(q + 5). Again R = 0. Results were obtained for 
Pr = 10.6, 11.6 and 12.6. These are also tabulated in 
Table 2. The results of conventional approximation, 
q = 1 when R = 0, are also shown for comparison. 
The temperature, velocity and pressure profiles in the 
boundary region are similar to those of the plane 
flow, as is the Prandtl number effect. 

CONCLUSIONS 

This is the first analysis of natural convection 
flows adjacent to horizontal surfaces in cold water, 
wherein a density extremum may occur. The use of 
the simple density relation for water, (l), has 
eliminated the need of any approximation in the 
buoyancy force term. Only two new parameters R 
and q arise. These determine the fundamental nature 
of the density field and the effects of the pressure and 
salinity levels, respectively. 
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Extensive calculations are presented for horizontal 
surfaces with both isothermal or uniform flux 
conditions. Wide ranges of Prandtl number, salinity 
and pressure levels, q, and temperature conditions R 

are considered. The conventional buoyancy force 
approximation is included in the present formulation 
by choosing q = 1 in those flows for which R = 0. 

The parameter I, determines the vigor of the flow 
and the condition for convective inversion. For flow 
over a horizontal surface, we find that I,,, = 0 for R 

2 0.301. Thus, for an ice slab melting in water, this 
corresponds to an ambient temperature of t, 
z 5.7”C. In experiments with a vertical ice surface 
melting in water, Bendell and Gebhart [lS] found 
flow reversal to occur between 5.5 and 5.6”C. A 
particuiar striking result is the sharp decrease in heat 
transfer in the region of density inversion. The effect 
of Prandtl number and q on heat transfer is small 
when JR1 is small, and it increases with an increase in 
R. No applicable experimental data are available to 
compare with our numerical results. 
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CONVECTION NATURELLE SUR DES SURFACES HORIZONTALES 
DANS L’EAU AU VOISINAGE DE ~EXTRE~UM DE DENSITE 

R~um&-On analyse la convection naturelle g&r& dans l’eau froide adjacente B une surface 
horizontale. Un,traitement de rbgion frontibre est approprie ii un large domaine de conditions lorsque la 
force de pous& est CloignCe de la surface. Lorsque la configuration est axisymitrique par rapport B une 
normale g la surface, il existe un boulement radial. Le r6gime de couche limite existe aussi quand la 
pouss&e d’ArchimMe est eloignie de la surface avec Woulement s’bartant de I’axe. Les deux types de 
convection naturelle sont consid&rbs pour une temperature basse d’eau pure ou salte, lorsqu’un extremum 
de densiti existe dans le domaine considirt. Une nouvelle bquation simple de densitir donne une 
formulation compacte de transport i la fois pour l’&coulement de plan et de disque. Des solutions sont 
don&s pour des conditions r&alistes de nombre de Prandtl et de temptrature. On note des 
renversements de poussee et des conditions d’inversion de convection. Des tabulations dttaillies des 
param&res de transport sont incluses pour les deux cas de surface isotherme et de flux par&al uniforme. 
Ces r&&tats sont cornpar& & ceux qui sent obtenus pour ~approximation classique des forces de 

pous&e. 

DURCH AUFTRIEB HERVOGERUFENE STROMUNGEN AN HORIZONTALEN 
FL&HEN IN WASSER NAHE SEINES DICHTEEXTREMUMS 

Zllsammenfassung-Es werden Striimungen untersucht, die in kaltem Wasser nahe einer horizontalen 
FlLhe durch Auftrieb hervorgerufen werden. Eine Behandlung als Grenzschichtgebiet ist in einem weiten 
Bereich von Bedingungen angebracht, wenn der Netto-Effekte der Auftriebskraft von der Flache 
weggerichtet ist. Dies ergibt eine Zustriimung an der Anstramkante einer ebenen Stramung, die auftreten 
kann, wenn die rsumliche Anordnung der Auftriebskraft in zweidimensionalen kartesischen Koordinaten 
beschrieben werden kann. Eine radiale oder Scheiben-Strsmung ergibt sich, wenn die Anordnung radial 
symmetrisch zu einer FILhennormaIen ist. Ein Grenzschichtgebiet ergibt sich such hier, wenn der Netto- 
AutIrieb von der Oberfliiche weg und die St&mung von der Achse nach a&en gerichtet ist. Beide Arten 
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von Striimungen durch thermischen AuRrieb werden in reinem oder salzigem Wasser bei niedriger 
Temperatur betrachtet, wobei ein Dichteextremum im Auftriebsgebiet vorliegen kann. Eine neue, sehr 
genaue und einfache Dichtegleichung ergibt eine kompakte Formulierung der Transports sowohl fti 
ebene wie Scheibenstromungen. Fur die Prandtl-Zahlen und Temperaturbedingungen, die normalerweise 
vorkommen, werden Losungen angegeben. Auftriebsumkehr und Bedingungen fur konvektive Inversion 
treten auf. Detaillierte Tabellen der Transportparameter sind beigefugt, sowohl fur Randbedingungen mit 
isothermen Oberfliichen wie fti solche mit konstantes Wiirmestromdichte. Die Ergebnisse werden mit 

jenen verglichen, die erxielt werden, wenn man die iibliche Approximation der Auftriebskrafte benutxt. 
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I-IOTOKH, B03HMKAiOl.BME Y I-OPki30HTAJlbHblX IlOBEPXHOCTEfi B PE3YJlbTATE 
JfEtiCTBMR APXMME)JOBbLX CMJI B BOAE B6JDi3M EE 3KCTPEMAJIbHOn 

llJlOTHOCTH 

Anno~aq11s-~Han~3~pyroTcn IIOTOKH, B03HHKamuHe B XOJIOAHOE? Bone y rOpH30HTanbHOfi nOBepX- 

HOCTH B pe3ynbTaTeAekTBHKapXHMeAOBbIXCHn. npH6nHreHHe IlOrpaHH*HOrO CJlOIl MOIKKHO HCllOnb- 

30BaTbm,, luH&X,KOrO AHalla30HayCnOBH'ii,KOrAaCyMMapHVii 3+@eKT apXHMeAOBbIX CHIl CKa3MBaeTcK 

BAanH OT noeepxeocTa.3TonponBnneTcn B HaTeKaHHH Ha nepenemo KPOMKY npH nnocxonapannenb- 
HOMTe'IeHHH,'lTOMO~eT HMeTb MeCTO B CJly'iae,KOrAa IlpOCTpaHCTBeHHaSl KOH'$HrypaUHn IlOAtiMHO% 

CHJIM OilHCbIBaeTCR B AByMepHOii CHCTeMe AeKapTOBbIX KOOpAHHaT. PaAHanbHOe HJIH AHCKOO6pa3HOe 

TeSeHHe B03HHKaeT B TOM Cnytae,KOrAa KOH+HrypaUHR IlBnleTCIl paAHanbH0 CHMMeTpHSHOA OTHOCH- 

TenbHO HOpManH K IlOBepXHOCTH. PeXWM nOrpaHH'IHOr0 CJlOIl B03HHKaeT OIlRTb, KOI-llK CyMMapHaX 
noAdMHan ciina AekrByeT BAam 0T n0BepxHomH.a TeqeHHe npoHcxoAuT Hapy*y 0T ocH. PaccMa- 
TpHBaKITCX o6a BHAa TeIlnOBbIX CB060AHOKOHBeKTHBHbIX IIOTOKOB, B03HHKalOlUHX IlpH HHJKOii TeM- 

neparype B qHcroii H.IH conhiofi Bone, B KOTOpOii 3KCTpMyM IIJIOTHOCTH MO*eT HMeTb MeCTO B 

06na~HAeii~BHKapX~MeAOBbIXCHn.Honoe,AOBOnbHOTO~H~H IIpOCTOe, ypaBHeHHe AJIX IIJIOTHOCTH 

n03BOnlleT IlOJIy'lHTb KOMIlaKTHyH) +OpMynHpOBKy nepeHOG4 B Cny'laKX I'InOCKOrO H AHCKOO6FGl3HOrO 

TeqeHHk npHBOAHTCn PeIIIeHHn AJIn WCJIa npaHATJI%I H TeMIIepaTypHbIX yCJIOBHfi, KOTOpbIe O6bNHO 

BCTPeValOTCR Ha llpKTliKe. OTMC’IaCTCfl B03HHKHOBCHHe 06pAeHHn IlOAeMHbIX CHJI H yCJlOBHfi 

KOHBeKTHBH0E-i HHBepCHH. npHBOAXTCs noApo6Hble Ta6JIHUbI IlapaMeTpOB nepeHOGi KaK AJlR H3OTeP 

MH'ICCKHX yCnOBHfi Ha nOBepXHOCTH, TaK H Ann cnyqan oAHopoAHor0 TennoBoro noToKa Ha 

IlOBCpXHOCTH. AaHO CpaBHeHHe IlOny'ieHHbIX p3ynbTaTOB CO CJly’laeM HCllOJlb30BaHHR o6bIrHoro 

apXHMCAOBOr0 npH6JlH)KeHHI. 


